
Scientific Visualization, 2023, volume 15, number 5, pages 73 - 88, DOI: 10.26583/sv.15.5.07

Application of an Agent-Based Model to Develop Ontological

Data Visual Management Tool

D. S. Razdyakonov1, D. I. Muromcev2
Faculty of Software Engineering and Computer Technologies, ITMO University,

St. Petersburg, Russia

1 ORCID: 0009-0009-9668-207X, ladone3@gmail.com
2 ORCID: 0000-0002-0644-9242, d.muromtsev@gmail.com

Abstract
The paper presents an agent-based model of interactive visualization and proposes a

method for its application in the development of the ontological data visual management tool.
The process of user interaction with the visualization is represented as a state graph, where
each node is a separate visualization. The initial state is known, and the final state is formed
in the process of user interaction with the ontological data visual management tool. Each
intermediate visualization from the state graph is transferred into the multidimensional
Euclidean data space formed on the basis of the visualized ontology, which allows to calculate
weighting coefficients on the state graph edges and to search the graph using known
algorithms. Application of the model allows for a reduction in the labor intensity of executing
user scripts due to the reduction of step-by-step visualization creation to the task of searching
in the state space.

Keywords: ontologies, ontology management, ontology visualization methods,
visualization models, interactive visualization.

1. Introduction
The efficiency of the ontology data management (ODM) process directly depends on the

software tools that provide this process. Efficiency is measured both in man-hours for
business tasks and in SPARQL/UPDATE query processing time for inter-service
communication tasks.

Depending on the management objectives, various software tools are applied to
improve the efficiency of the ODM process. For developing small ontologies represented as
a dozen of related files, data engineers prefer to use Protégé [12] or WebVOWL [21], but for
managing ontologies that belong to LOD (Linked Open Data), they use web platforms such
as Metaphactory [10] or TopBraidComposer [25] web interfaces. Such platforms are able to
perform lazy queries on data stored in public knowledge bases (KBs).

An important component of commercial ontology development tools is the visual
management feature of ontology data (OD), which significantly improves the efficiency of
ODM processes by automating the compilation of SPARQL queries and providing
transparent manipulation of ontology data schema.

Visual management of ontology data is a process of OD management performed
with the use of software tools that combine the functions of human-machine and machine-
human interfaces. In other words, these are tools that allow you to edit and visualize OD at
the same time.

At the same time, it is not enough that one and the same ODM tool performs two
features at once (see Fig. 1). For example, a program that displays an ontology graph and
provides a form for creating new ontology entities will not be considered a visual
management tool if the two graphical interfaces are not linked together, i.e., do not share a
common state.

https://doi.org/10.26583/sv.15.5.07
mailto:ladone3@gmail.com
mailto:d.muromtsev@gmail.com

Figure 1 — OD management tool (ODMT) and OD visual management tool (ODVMT)

A challenge in the development of OD visual management tools (ODVMT) is that it is

necessary to solve not only the tasks assigned to OD editing tools, but also the tasks
assigned to OD visualization tools. For example, if there is a need to work with ODs that
contain blank nodes, the tool should not only be able to edit or create structures containing
blank nodes (SCBN), but should also be able to provide the appropriate visualization of
SCBN.

When developing ODVMT, the order of user interaction with controls is important. If
for ODMT the order of interaction can be freely changed without reference to the
visualization, then for ODVMT the development is much more complicated because the
same action can be performed in several ways, and the sequence of interaction with the
controls directly affects the legibility of the visualization and the efficiency of interaction.

In ODVMT, part of the visualization inevitably becomes interactive as its current state
depends on the actions performed by the user, so as part of our paper, we propose to use an
interactive visualization model to optimize the ODVMT development process. This
approach to the IV model allows us to formally describe the objective function of the IV
process and ensure the purposefulness and acceleration of ODVM processes.

Interactive visualization (IV) is a visualization that has a changeable state, where
the state of the visualization can change either over time or in response to external events
(input operations or modifications to visualization parameters).

2. Related literature analysis
Existing ontology data management tools, in one way or another, implement the ODM

methods, which are divided into development, visualization, and storage methods.

Currently, there are many works such as Ontology Visualization Methods — a Survey [14],
Ontology Visualization Methods and Tools: A Survey of the State of the Art [7] and Ontology
Visualization Protégé Tools — a Review [18], which provide detailed and comprehensive
reviews on OD visualization tools and methods.

On the other hand, there are works such as Ontology Development Methods [9],
Methodologies for Ontology Development [13], A Review On Ontology Development
Methodologies for Developing Ontological Knowledge Representation Systems for Various
Domains [2], and Methods for Ontology Development [5], which review and compare
ontology development practices. In addition to the listed methodologies there are works
Managing Ontologies: A Comparative Study of Ontology Servers [1], Hybrid Method for
Storing and Querying Ontologies in Databases [20], Creating Knowledge Databases for
Storing and Sharing People Knowledge Automatically Using Group Decision Making and
Fuzzy Ontologies [15], and On Storing Ontologies Including Fuzzy Datatypes in Relational
Databases [3], which address the issues of efficient storage of OD in KBs and other available
formats.

While there are quite a few papers devoted to tools supporting the ODM process, the
development of such tools is a separate and large area of knowledge that is rarely related to
the field of semantic technologies and OD. From the point of view of user interface
development, articles such as Integrating Human-Centered and Model-Driven Methods in
Agile UI Development [8] and Paprika: Rapid UI Development of Scientific Dataset Editors
for High Performance Computing" [16] may be of interest, and for immersion in the area of
developing tools for interactive visualization of multidimensional data, Developing a System
for Interactive Visual Analysis of Multidimensional Data [23] may be useful.

3. Agent-based interactive visualization model
In this paper, we formulate an approach to the development of ODVMT. We base our

method on an interactive visualization model. Let's describe the model.
The state of the interactive visualization changes in response to user actions, where user

actions can be either to edit the OD or to explore the OD.
The interactive visualization model is based on the process of interactive search, the

most demanded "sub-process" of management when manipulating Big Data in a lazy
visualization framework. Interactive search is a process in which the user changes the state
of a visualization so that the visualization responds to a given search query. This topic is
discussed in detail in An Ontology-Driven Visual Question-Answering Framework [4] and
VQASTO: Visual Question Answering System for Action Surveillance Based on Task
Ontology [19] papers.

The basis of the model states is an ontology graph G, which is a set of subject-predicate-
object triples ⟨s, p, o⟩ (1). The ontology graph generates a multidimensional data space
whose dimensions correspond to the domain of values of predicates from the ontology, i.e. a
dimension is the set of possible objects occurring in triplets with the corresponding
predicate.

U — set of URIs, where each URI defines a logical or physical resource.
B — set of blank nodes.
L — set of literal values such as string, integer, or boolean.
G — ontology graph.

s ∈ B ∪ U; p ∈ U; o ∈ B ∪ L ∪ U (1)
The data generate the space D (2), which consists of the dimensions Di (Fig. 2).

D = ⟨D1, D2, D3, …Di⟩ | Di = o ∈ (B ∪ L ∪ U) : ⟨s, p, o⟩ ∈ G | i = p. (2)
The user observes the data space or a part of it on the screen, where the data space is

projected onto the user's screen using a visualization function that takes as input the

position and size of the search frame in the data space, and outputs a two-dimensional
static visualization.

Search frame (SF) is a section of the data space that is available for the user to
observe or the agent's position in the data space. During visualization, the data from the
section enclosed by the search frame is converted by the visualization function VD(SF) into a
set of parameters that are input to the visualization tool.

Search point (SP) is a position of the user's attention focus in the data space when
using the interactive visualization tool.

User is a person who communicates with interactive visualization through human-
machine interface (monitor/VR-glasses + visualization tool).

Agent is a user's projection inside the visualization tool, i.e., an abstraction describing
the state of the visualization tool at each step of interactive visualization. In the system
Agent = SF.

IVisD — interactive visualization of data space D (Fig. 3) is a tuple of two elements: data
visualization function VD(SF) and tool function (visualization control function) TD(SF,
INPUT). Where SF is the search frame, INPUT is the set of commands from the
visualization tool interface, and SF′ is the new position of the search frame. vD is the set of
parameters that are input to the visualization tool.

Figure 2 — 2D/3D data spaces

In our case vD is a set of graphical primitives, as well as camera parameters and lighting

settings that are input to the graphics engine for processing.
Performing a given number of simple actions (Tsg), the user by means of tools generates

commands to the interactive visualization, which change the position of the search frame,
thus changing the visualization state.

Figure 3 — Interactive data space D visualization

While exploring the visualization results, the user changes the position of the attention

focus.

If we take the number of input operations (Ts) as time and the distance in the data (di)
space (Ss) as the path, we can calculate the agent's movement speed in the data space (3).

𝑉𝑠 =
√(𝑑1𝑎

− 𝑑1𝑏
)2 + (𝑑2𝑎

− 𝑑2𝑏
)2 + ⋯ + (𝑑𝑛𝑎

− 𝑑𝑛𝑏
)2

∑ 𝑇𝑆𝑔
𝑚
𝑔=1

=
𝑆𝑠

𝑇𝑠

(3)

where
a, b — initial and final position in the data space,
dn — position coordinate in multidimensional space,
m — number of search steps.
The main advantage of our model is that it reduces the step-by-step creation of

visualization to the task of searching in the state space generated from multidimensional
ontological data and primitive actions of visualization tools. The model describes the
interactive visualization process function in terms of speed, labor intensity, and distance,
which allows for targeted and accelerated interactive search over ontological knowledge
bases under conditions of limited observability of the data space.

Thus, we reduce the interactive visualization, i.e., the step-by-step creation of the
visualization, to the task of searching in the state space. Accordingly, the target state is a set
of values of the visualization parameters.

In terms of the model, the final and initial states, i.e., final and initial visualizations,
differ in the position of the search frame in the data space, where the position is described
by a point in the multidimensional data space and by the width of the frame in each
dimension. It follows that optimization can proceed along two dimensions: the width and
the position of the search frame in the multidimensional space. The optimization goal is to
minimize the distance function between the target search frame position and the current
search frame position in the data space, and to minimize the difference between the desired
search frame width for each dimension and the current search frame width for those
dimensions. If we consider the search frame width in the calculation of the objective
function as a set of additional dimensions, we obtain a space of 2n dimensions and a
distance function as the objective function.

The objective function, which is used to optimize the search process in the state space,
is the Euclidean distance in the 2n-dimensional data space between two vectors (p, q)
describing the target and current states.

𝑓(�⃗�, �⃗�) = √∑(𝑝𝑖 − 𝑞𝑖)2

2𝑛

𝑖=1

 (4)

Each vector has n values of dimension coordinates in the data space and n values of
widths for the same dimensions, i.e., 2n values. Since the process we reduce to the search
task in the state space is a step-by-step visualization process, each state vector describes the
visualization state at one step, i.e., it describes a set of parameter values that were used to
create the visualization, where a visualization is a set of graphical primitives representing a
part of the data space. At the same time, the target visualization may be unknown at the
beginning of the search and will be formed during the user's interaction with the
visualization tools. If we describe the process in terms of state space, we can say that the
path to the target state at the time of search start is unknown and is computed during the
heuristic search.

The state space is represented by a quartet [N, A, S, GD], where
N — set of consecutive visualizations or set of search frame positions in the data space,
A — set of input steps (changes of visualization parameters) in the process of creating

the target visualization.

S — non-empty set of initial states, i.e., possible starting positions of the search frame.
GD — non-empty set of target states, i.e. a set of final visualizations that can be

described in one of the following ways:
• Measurable properties of generated visualizations encountered in the search process.

(For example, the number of visualization elements).
• The sequence and nature of the elementary input actions by which the target

visualization was obtained.
Valid path is a path from a state of the set S to a state from the set GD. That is, it is a

set of input steps and visualization states (positions of the search frame) that were
sequentially performed in the process of searching for the target visualization.

Transitions in the state space correspond to the steps of the visualization creation
process and describe the possibility of transition from one visualization state to another.

Visualization parameters are the position and width of the search frame in the data
space for each data dimension (the visualization state is projected into a set of graphical
primitives).
Table 1 — The interactive visualization states and their parameters

Visualization state
Coordinates
(hasColor,
hasSugar)

Width of the
search frame

(hasColor,
hasSugar)

Distance to
target

Visualization state 1 (1, 1) (3, 4) 4.123

Visualization state 2 (1, 1) (1, 4) 3.605

Visualization state 3 (1, 3) (1, 1) 0

Visualization state 1.1 (1, 1) (2, 4) 3.741

Visualization state 2.1 (1, 4) (1, 1) 1

Table 2 — Calculation of path lengths taken step by step
Path Total labor intensity Path length

1(1) → C2(2) → 3 3 + 3 = 6 2 + 3.605 = 5.605

1(1.1) → 1.1 → (1.2) → C2(2) → 3 4 + 3 + 3 = 10 1 + 1 + 3.605 = 5.605

1(1) → C2(2.1) → 2.1 3 + 3 = 6 2 + 4.242 = 6.242

The model describes the state space and data space in which the state graph is located,
as well as the speed at which it is possible to move from one state (graph node) to another
using the available user interface controls. This reduces the visualization tool development
to searching for the optimal path in a weighted state graph, where the weighting coefficients
on the edges are the labor intensity of the transition from one state to another, which is
calculated based on the speed and distance in the data space. Various search algorithms and
optimization functions can be used to solve the search task.

4. Example of path calculation in a two-dimensional state
space

Here is an example of interactive searching in terms of our model. The target ontology
is a truncated wine ontology containing two attributes for each wine (color and sugar
content).

Figure 4 — Two-dimensional data space and visualization state graph

The search target is a wine with the following parameters: {color} - pink, {sugar

content} - semi-sweet. The user should change the interactive visualization state so that
only those wines that satisfy the search conditions are on the screen. The data space and the
visualization state graph are shown in Fig. 4. The space contains 12 different instances of
the Wine class. The main parameters of the interactive visualization state are presented in
Tables 1, 2, and the visualization of the search state using the Ontodia3d tool [6] is
presented in Fig. 5. The animated process of interacting with the Ontodia3d tool in VR is
shown in Fig. 6.

This example shows how our model describes the data space and state graph of the
interactive visualization, which allows us to reduce the step-by-step construction of the
visualization to the task of searching the state space, which is formed on the basis of two
parameters (in this example) describing all classes of the ontology. Such a description
allows us to discard suboptimal ways of generating the target visualization and to identify
bottlenecks in the visualization tool interface.

Figure 5 — Visualization state 1–4

Figure 6 — The process of interacting with Ontodia3d in VR

5. Method for visual management of ontology data
Previously, we defined that a method is a technical way of developing ODVMT. We base

our method on an interactive visualization model and propose to actively apply it in the
interface development phase of ODVMT.

An important feature of our model is that the model describes the state graph of the
interactive visualization and allows us to generate the objective function of the interactive
visualization process (4).

Method sequence:

https://www.youtube.com/watch?v=pa1IaU5Dau4

1. Generation of the target dataset for testing the selected scripts and compilation of the
data space based on it. The target dataset, according to the model, is the graph G = ⟨s, p, o⟩.

a. Extraction of all possible properties of ontology elements that can be used for
interactive search. That is, the extraction of dimensions Di from the graph G, where
each dimension Di = o ∈ (B ∪ L ∪ U): ⟨s, p, o⟩ ∈ G | i = p.

b. Generation of a multidimensional ontology data space, where the number of
dimensions of the space is equal to the number of properties D = ⟨D1, D2, D3, ... Di⟩.

The generation of space on each dimension for different usage scripts is a separate
big topic for research, but in the scope of our visualization, where visualization is
generated as a three-dimensional graph (the tool is described in [6]) with semantic
distribution of nodes in the visualization space, we propose to use Word Embedding
algorithms, which are described in detail in the articles Using Word Embeddings for
Visual Data Exploration with Ontodia and Wikidata [22] and Word Embeddings as
Metric Recovery in Semantic Spaces [11].

2. Assembling a script set (C) for using the ODM C = ⟨C1, C2, ... Ci⟩.
3. Compiling the state graph SG of the interactive visualization. At this step, the main

states of the interface of the ODM tool are extracted, and the state graph is compiled, where
the nodes of the graph are the states of the interactive visualization, which have a fixed
position in the data space, and the edges denote the possibilities of transition between the
states SG(V, E) = ⟨V, E⟩ (V is the set of nodes, and E is the set of edges). The Euclidean
distance function (4) is used to compute the weighting coefficients on the edges of the
graph.

4. Generation of sets of valid paths in the state graph for each script P=⟨Pc1, Pc2 ... Pci⟩ |
Pci = ⟨(v1, v2), (v2, v3) ... (vi-1, vi)⟩, as well as the definition of the initial S=⟨... Sci ...⟩ and final
states for each script GD = ⟨... GDci ...⟩. At this stage, standard algorithms for finding valid
paths in a graph, such as Dijkstra's algorithm or A* algorithm, can be used.

5. Computation of the labor intensity of possible paths taking into account the
weighting coefficients L(Pci) = Difficulty(v1, v2) + ... + Difficulty(vi-1, vi).

6. Sorting paths by length and removing redundant paths
RemoveDuplicates(Sort(L)) | L = ⟨L(Pc1) ... L(Pci)⟩.
Thus, it is possible to eliminate redundant interface elements and optimize the user's

interaction with the ODMT interface.
In cases where it is impossible to define a fixed set of visualization states, for example,

when the camera position in the state space has thousands of possible positions, you can
evaluate visualization tools by the speed of movement in the state space. This approach
requires the following steps:

1. Make a list of controls.
2. Calculate the speed of movement in the state space for each control and determine

the zone of the data space in which the tool can be used.
3. Eliminate duplicate tools that allow you to move around in the same zone of the data

space.
The possibility of using mathematical optimization to identify potential transitions

between states when the interface controls necessary for such transitions between states
have not yet been implemented is also of interest. In such cases, the optimization can show
the optimal path between states so that programmers can then implement the interface
controls that allow these transitions to occur.

As a result of applying the method to the OD visualization tool in 3D and VR spaces [6],
the average labor intensity was reduced by 21.8% (Fig. 7). Where labor intensity is
considered as the number of the elementary actions (clicking the mouse button, scrolling
with the mouse wheel, entering a symbol using the keyboard) that the user has to perform

in order to execute the script. The graph shows the average values of labor intensity
obtained during the tests, so the numbers in Fig. 7 are fractional.

The reduction of labor intensity was achieved by removing suboptimal paths from the
state graph of the interactive visualization according to the proposed method. The
interaction process with the filter panel (Fig. 8) was optimized by ordering the input steps
by means of the user interface, which reduced the path in the data space. In the first script,
users were allowed to apply filters in random order, and after the modification, the
application of filters was brought to a strict order. Fig. 9 shows the charts of convergence to
the objective (target state). The charts are plotted only for the steps related to the
application of filters.

The second part that was subjected to optimization was the control linkage panel (Fig.
10).

Figure 7 — Labor intensity of the ODM tool before and after applying the method

Initially, the panel gave a complete list of all linked controls, displaying all dimensions

in which the control has a position other than zero, which, in terms of the position of the
search frame in the data space, looked like displaying the entire space around the target
control and then focusing on a certain position in that subspace. We optimized the interface
so that the user would first select the type of linkage he is interested in, i.e., the dimension,
and then the value in that dimension.

Figure 8 — Filter panel before and after optimization

3.2

2.5

0.0

1.0

2.0

3.0

4.0

IN
P

U
T

LA
B

O
R

IO
U

SN
ES

S
(S

IM
P

LE
 A

C
TI

O
N

S)

Basic instrument Modified instrument

Figure 9 — Charts of convergence to the objective (target state)

Figure 10 — Link panel of the control before and after optimization

After computing the paths for the first and second interface variants, the new path in

the state space appeared to be shorter. Figure 11 shows the weighted state graph with
weighing coefficients denoting the distance in the state space between nodes
(visualizations) (the graph was built using the service https://graphonline.ru).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
ve

ra
ge

 d
is

ta
n

ce
 t

o
 t

h
e

ta
rg

et
 s

ta
te

 in
 t

h
e

d
at

a
sp

ac
e

(3
 d

im
en

si
o

n
s)

Average amount of user performed simple
actions

Approaching graphic before modification of the instrument

Approaching graphic after modification of the instrument

6. Tools
The development and application of the method was performed using a commercial

product Metaphactory [10] with a closed license (https://metaphacts.com/metaphactory-
software-license-agreement). The Metaphactory platform provides an opportunity to
modify the user interface of the web-application in real time. The described method was
used to develop an auxiliary component that gathers and processes statistical data and
allows evaluation of the configuration of the user interface in real time. To date, the
component is in prototype status and is not included in the release build.

The main component of Metaphactory ontology graph visualization is the Ontodia
component mentioned in [17, 24]. The component visualizes OD in the form of a two-
dimensional graph, but for hypothesis testing a prototype of the component that visualizes
in the form of a three-dimensional graph was developed. The public version of the Ontodia
component (GNU General Public License) is available at
https://github.com/metaphacts/ontodia. The Ontodia3d implementation uses the
Metaphactory functionality, but the basic part of the component is placed in the open
repository https://github.com/metaphacts/ontodia.

In the context of this study, we measured the parameters of labor intensity and speed of
movement in data space using Ontodia and Ontodia3d components, based on which we
formed appropriate layout-algorithms that minimize the labor intensity of creating
visualizations.

A different use case assumes that the method can be applied to the development of
ODVMT from scratch within a cyclic development model, where at each development cycle
the method steps are applied and the interface is modified.

7. Conclusion
In this paper, we describe the concepts and definitions underlying OD and interactive

visualization management processes and describe an agent-based model of interactive
visualization. The main area for further research is the development of interactive
visualization metrics for evaluating ODVMT.

In the A New Tool for Linked Data Visualization and Exploration in 3D/VR Space paper
[6], based on the described interactive visualization model, we build a tool for visualizing
OD in 3D and VR spaces to perform the process of interactive search (data exploration) and
use this tool for visual editing of OD. The interactive visualization model and the visual
management tool built on it are the basis of the OD visual management method described
in this paper.

For this method, an approach to blank node visualization was also developed, which is
described in Approach to Blank Node Processing in Incremental Data Visualization by the
Example of Ontodia [17] and Approach to Blank Node Processing in Incremental Data
Visualization by the Example of Ontodia [24]. This visualization approach eliminates the
bottlenecks of visual management methods, i.e., it allows visual management (visualization
and editing) of ODs containing blank nodes.

Identifiers of blank nodes cannot be used in SPARQL and UPDATE queries, which
make it impossible to automatically build visualizations of graph fragments containing
blank nodes as well as step-by-step editing of structures containing blank nodes. However,
the approach described in [17, 24] assumes the use of context-dependent identifiers for
blank nodes, which can be used for automated compilation of SPARQL and UPDATE
queries as well as for step-by-step visualization of SCBN.

Figure 11 — Path in a weighted state graph

Another natural direction for continuing research on this topic is to investigate the

possibilities of applying language models with attention mechanisms to compute the most
relevant data for the user. In other words, the application of neural networks to automate
the computation of the search frame size. The size of the search frame directly affects the
amount of data that gets on the user's screen. Data coherence is lost if the search frame is
too small, and data may be perceived for noise if frame is too large. The size of the search
frame is the bottleneck of OD visualization and visual management tools, and automated
calculation can improve the efficiency of OD management processes.

8. Terms and abbreviations
Data Management (DM) is the process of synchronizing data between multiple data

sources with human involvement.
Ontological Data Management (ODM) is the management of data that is

represented in an ontological format.
Interactive visualization (IV) is a visualization that has a changeable state, where

the state of the visualization can change either over time or in response to external events

(input operations or modifications to visualization parameters). As part of our study, we
propose to use an interactive visualization model to optimize the ODVMT development.

OD visual management (ODVM) is a management process that is performed using
ODM software tools that combine the functions of human-machine and machine-human
interfaces, i.e., those where the OD visualization tool is simultaneously the OD editing tool.

OD — Ontological data.
ODMT — Ontology data management tool.
ODVMT — OD visual management tool.
SCBN — Structures containing blank nodes.

References
1. Ahmad, M. N., & Colomb, R. M. (2007, January). Managing ontologies: a

comparative study of ontology servers. In ADC (Vol. 7, pp. 13-22).
2. Aminu, E. F., Oyefolahan, I. O., Abdullahi, M. B., & Salaudeen, M. T. (2020). A

review on ontology development methodologies for developing ontological knowledge
representation systems for various domains.

3. Barranco, C. D., Campaña, J. R., Medina, J. M., & Pons, O. (2007, July). On storing
ontologies including fuzzy datatypes in relational databases. In 2007 IEEE International
Fuzzy Systems Conference (pp. 1-6). IEEE.

4. Besbes, G., Baazaoui-Zghal, H., & Ghezela, H. B. (2015, July). An ontology-driven
visual question-answering framework. In 2015 19th International Conference on
Information Visualisation (pp. 127-132). IEEE.

5. Breitman, K. K., Casanova, M. A., & Truszkowski, W. (2007). Methods for ontology
development. Semantic Web: Concepts, Technologies and Applications, 155-173.

6. Daniil, R., Wohlgenannt, G., Pavlov, D., Emelyanov, Y., & Mouromtsev, D. (2019). A
new tool for linked data visualization and exploration in 3D/VR space. In The Semantic
Web: ESWC 2019 Satellite Events: ESWC 2019 Satellite Events, Portorož, Slovenia, June 2–
6, 2019, Revised Selected Papers 16 (pp. 167-171). Springer International Publishing.

7. Dudáš, M., Lohmann, S., Svátek, V., & Pavlov, D. (2018). Ontology visualization
methods and tools: a survey of the state of the art. The Knowledge Engineering Review, 33,
e10.

8. Fischer, H., Yigitbas, E., & Sauer, S. (2015, September). Integrating human-
centered and model-driven methods in Agile UI development. In Proceedings of 15th IFIP
TC. 13 International Conference on Human-Computer Interaction (INTERACT), S (pp. 215-
221).

9. Gokhale, P., Deokattey, S., & Bhanumurthy, K. (2011). Ontology development
methods. DESIDOC Journal of Library & Information Technology, 31(2).

10. Haase, P., Herzig, D. M., Kozlov, A., Nikolov, A., & Trame, J. (2019). metaphactory:
A platform for knowledge graph management. Semantic Web, 10(6), 1109-1125.

11. Hashimoto, T. B., Alvarez-Melis, D., & Jaakkola, T. S. (2016). Word embeddings as
metric recovery in semantic spaces. Transactions of the Association for Computational
Linguistics, 4, 273-286.

12. Kamdar, M. R., Horridge, M., Wogulis, L., Fitzgerald, C., Hardi, J., Anderson, D., ...
& Gonçalves, R. S. Interactive Exploration and Collaborative Curation of an Industry-Scale
Healthcare Knowledge Graph Using the WebProtégé Cloud-Based Editor.

13. Jones, D., Bench-Capon, T., & Visser, P. (1998). Methodologies for ontology
development.

14. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., & Giannopoulou, E. (2007).
Ontology visualization methods—a survey. ACM Computing Surveys (CSUR), 39(4), 10-es.

15. Morente-Molinera, J. A., Pérez, I. J., Ureña, M. R., & Herrera-Viedma, E. (2016).
Creating knowledge databases for storing and sharing people knowledge automatically
using group decision making and fuzzy ontologies. Information Sciences, 328, 418-434.

16. Nassiet, D., Livet, Y., Palyart, M., & Lugato, D. (2011, July). Paprika: Rapid UI
development of scientific dataset editors for high performance computing. In International
SDL Forum (pp. 69-78). Berlin, Heidelberg: Springer Berlin Heidelberg.

17. Razd’yakonov, D. S., Morozov, A. V., Pavlov, D. S., & Muromtsev, D. I. (2020).
Approach to Blank Node Processing in Incremental Data Visualization by the Example of
Ontodia. Programming and Computer Software, 46, 384-396.

18. Sivakumar, R., & Arivoli, P. V. (2011). Ontology visualization PROTÉGÉ tools–a
review. International Journal of Advanced Information Technology (IJAIT) Vol, 1.

19. Vo, H. Q., Phung, T. H., & Ly, N. Q. (2020, November). VQASTO: Visual question
answering system for action surveillance based on task ontology. In 2020 7th NAFOSTED
Conference on Information and Computer Science (NICS) (pp. 273-279). IEEE.

20. Vysniauskas, E., Nemuraite, L., & Paradauskas, B. (2011). Hybrid method for
storing and querying ontologies in databases. Elektronika ir Elektrotechnika, 115(9), 67-72.

21. Wiens, V., Lohmann, S., & Auer, S. (2018, August). WebVOWL Editor: Device-
Independent Visual Ontology Modeling. In ISWC (P&D/Industry/BlueSky).

22. Wohlgenannt, G., Klimov, N., Mouromtsev, D., Razdyakonov, D., Pavlov, D., &
Emelyanov, Y. (2019). Using word embeddings for visual data exploration with ontodia and
wikidata. arXiv preprint arXiv:1903.01275.

23. Maslennikov O.P., Milman I.E., Safiulin A.E., Bondarev A.E., Nizametdinov Sh.U.1,
Pilyugin V.V. (2014). Development of a system for analyzing of multidimensional data.
Scientific Visualization, 6(4), 30-49.

24. Razdyakonov D.S., Morozov, A. V., Pavlov, D. S., & Muromtsev, D. I. (2020)
Approach to Empty Node Processing in Portionalization of Data Example Ontodia.
Programming, (6), 16-29.

25. Alatrish, E. S. (2013). Comparison some of ontology. Journal of Management
Information Systems, 8(2), 018-024.

	1. Introduction
	2. Related literature analysis
	3. Agent-based interactive visualization model
	4. Example of path calculation in a two-dimensional state space
	5. Method for visual management of ontology data
	6. Tools
	7. Conclusion
	8. Terms and abbreviations
	References

